Categories: Uncategorized

The home run percentage is the number of home runs per 100 times

The home run percentage is the number of home runs per 100 times at
bat. A random sample of 43 professional baseball players gave the following data for home run percentages. 1.6 2.4 1.2 6.6 2.3 0.0 1.8 2.5 6.5 1.8 2.7 2.0 1.9 1.3 2.7 1.7 1.3 2.1 2.8 1.4 3.8 2.1 3.4 1.3 1.5 2.9 2.6 0.0 4.1 2.9 1.9 2.4 0.0 1.8 3.1 3.8 3.2 1.6 4.2 0.0 1.2 1.8 2.4
(a) Use a calculator with mean and standard deviation keys to find and s (in percentages). (For each answer, enter a number. Round your answers to two decimal places.)
=
x bar =
%
s = %
(b) Compute a 90% confidence interval (in percentages) for the population mean μ of home run percentages for all professional baseball players. Hint: If you use the Student’s t distribution table, be sure to use the closest d.f. that is smaller. (For each answer, enter a number. Round your answers to two decimal places.)
lower limit %
upper limit %
(c) Compute a 99% confidence interval (in percentages) for the population mean μ of home run percentages for all professional baseball players. (For each answer, enter a number. Round your answers to two decimal places.)
lower limit %
upper limit %
(d) The home run percentages for three professional players are below.
Player A, 2.5Player B, 2.4Player C, 3.8
Examine your confidence intervals and describe how the home run percentages for these players compare to the population average.
We can say Player A falls close to the average, Player B is above average, and Player C is below average.
We can say Player A falls close to the average, Player B is below average, and Player C is above average.
We can say Player A and Player B fall close to the average, while Player C is above average.
We can say Player A and Player B fall close to the average, while Player C is below average.
(e) In previous problems, we assumed the x distribution was normal or approximately normal. Do we need to make such an assumption in this problem? Why or why not? Hint: Use the central limit theorem.
Yes. According to the central limit theorem, when n ≥ 30, the distribution is approximately normal.
Yes. According to the central limit theorem, when n ≤ 30, the distribution is approximately normal.
No. According to the central limit theorem, when n ≥ 30, the distribution is approximately normal.
No. According to the central limit theorem, when n ≤ 30, the distribution is approximately normal.
 
Looking for a Similar Assignment? Order now and Get 10% Discount! Use Coupon Code “Newclient”

The post The home run percentage is the number of home runs per 100 times appeared first on Superb Professors.

"Order a Custom Paper on Similar Assignment! No Plagiarism! Enjoy 20% Discount"

Superbprofessors

Recent Posts

case study one page case study one page case study one page case study one page case study one page

Case study one page Case study one page Case study one page Case study one…

2 years ago

business calculus quiz

Business Calculus quiz that is 10 questions and has an hour time limit. Must be…

2 years ago

hnif 355 disscussion post

Write a 175- to 265-word response to the following: What constitutes “robust interoperability,” and what…

2 years ago

news briefing quest 2

For this News Briefing Quest task , pick and analyze a U.S. political news article…

2 years ago

acc610 final project milestone two critical element ii analysis of financial statements

ACC 610 Milestone TwoGuidelines and Rubric This is the secondof three milestone assignments that will…

2 years ago

write in complete paragraphs 5 pages

Please answer the questions in the attachment. I have sent you the required materials. Send…

2 years ago